2018 DOE Vehicle Technologies Office Review Presentation

Energy Impact of Connected and Automated Vehicles

PI: Huei Peng (UM)

Co-PI:

UM: Shan Bao, Andre Boehman, Yiheng Feng, Mark Gilbert, Dave LeBlanc, Henry Liu, James Sayer

ANL: Josh Auld, Erik Rask, Aymeric Rousseau, Ann Schlenker

INL: John Smart, Matthew Shirk

June 18-21, 2018

Project ID #EEMS001

Overview

Timeline

• Start date: 2015/10/01

End date: 2018/12/31

Percent complete: 80%

Budget

- Total project funding
 - DOE share: \$2,673,096
 - Contractor share: \$297,101
- Funding received in FY17: \$958,348
- Funding for FY18: \$929,775

Barriers

- Lack of high fidelity models to predict the energy impact of CAVs--need real-world trip data and human behavior data for the development and calibration of these models
- Some CAV functions need cooperating infrastructure to function—which is lacking

Partners

- University of Michigan (AA)
- Argonne National Lab
- Idaho National Lab

Interactions of Project Tasks (Task 4 centric)

Objectives / Relevance

- Deploy logging devices to assess energy usage on a large naturalistic fleet of passenger vehicles.
- Understand human behaviors/choices to develop better human decision models for simulations
 - Trip choices/patterns
 - User acceptance
- Test data used to develop model that can simulate the impact of energy consumption at a large scale (city of Ann Arbor) for connected and automated vehicles (CAVs). The model will include human behaviors and key CAV functions (adaptive traffic signals, eco-routing, eco-approaching and departure

Project Timeline- Milestones and Go/No-Go Key: _____ Task Milestone Go/no-go point 1.1 1.2.2 1.2 1.3 1.4 1.5 1.6 1.6 2 2.1 2.2 2.3 2.4 2.4 3 3.1 3.2 3.3 3.4 **7**4.1.1 4.1 4.2 4.3 4.4 4.5 4.6 4.7 5 5.1 5.3 5.2 5.3 6

03/16 06/16 09/16 12/16 03/17 06/17 09/17 12/17 03/18 06/18 08/18 (end) Year 1 Year 2 Year 3

6

Approach/Strategy

- Five coordinated tasks among three leading CAV research organizations
- Leverage the connected vehicle fleet already deployed at UofM, add "energy focus".
- Leverage INL's expertise in monitoring and analyzing advanced technology vehicle performance and driving conditions to determine how driver behavior and usage conditions affect energy consumption of the vehicles.
- Leverage ANL's expertise in modeling (Polaris and Autonomie)
- Final outcome: tools and test platforms that can be used to evaluate the energy impact of CAVs

Task 1: Instrumentation and data acquisition of energy related information

- Capturing travel, location, speed, and fuel/energy use on passenger vehicles (drivers' own vehicles & fleets)
- Ann Arbor, Michigan: 2016 present.
- 500 FleetCarma C2 devices each plug into OBD-II connector
- Mix of powertrains (gasoline, PHEVs, EVs)
- Data sent over the air to UMTRI servers & loaded into relational databases (overall process delay ~ 2 hours)
- Data supports Task 4 of this project (O/D for Polaris, Argonne machine learning's work, and eco-routing & -approach)
- Shared with ANL, INL, EPA, UM TechLab students

Vehicle Fleet Statistics

✓ Accelerated pace of recruitments in 2017
 215 devices in the database (~04/20/17)
 420 devices in the database (04/16/18)
 > 500 vehicles recruited

More than 4,500,000 miles of data collected

✓ Efforts to recruit PHEV&EV

Powertrain type	Number of vehicles(04/20/17)
ICE & HV	211 (98.1%)
PHEV & EV	4 (3 PHEV, 1 EV) (1.9%)
Total	215

Powertrain type	Number of vehicles(04/16/18)	
ICE & HV	392 (93.3%)	
PHEV & EV	28 (25 PHEV, 3 EV) (6.7%)	
Total	420	

	Number of Vehicles	Model	
EV	3	Nissan Leaf	
	14	Chevy Volt	
PHEV	3	Ford Fusion Energi	
	6	Ford Cmax	
	2	Toyota Prius Plugin	

Data Contents

Data Name		Populated %	Sampling Period		
GPS	Latitude/Longitude (deg)		97.04 %	3 (sec)	
	Vehicle Speed	(km/h)	89.69 %	1 (sec)	
	Engin	e RPM (rev/min)	89.23 %	2 (200)	
	Mas	s Air Flow (g/s)	69.54 %	2 (sec)	
	Fu	el Rate (L/hr)	2.58 %		
	Abs	olute Load (%)	72.96 %		
Fuel Info	Short Te	rm Fuel Trim B1 (%)	B1 alone : 49.40 %	5 (sec)	
	Short Te	rm Fuel Trim B2 (%)	B2 alone : 0 % B1 & B2 : 72.70 %		
	Long Term Fuel Trim B1 (%)		B1 alone : 49.41 %		
	Long Term Fuel Trim B2 (%)		B2 alone : 0 % B1 & B2 : 72.70 %	30 (sec)	
	Odometer (km)		34.09 %	30 (sec)	
	Ambient Temp ©		95.32 %		
		AirCon Power (KW)	93.73 %	60 (sec)	
2115110 511	Auxiliary Power (HVAC)	AirCon Power (Watt)	93.73 //		
Only	PHEN & EN	Heater Power (Watt)	13.78 %		
J,	Battery SOC (%)		97.40 %		
	Battery Voltage (V)		78.06 %	5 (sec)	
	Battery Current (A)		78.06 %	1 (sec)	
	Is Driving, Charging (bool)			-	

Fuel Consumption Calculation Study, EPA Data

Compared 4 methods (MAF, MAF+AFR, MAF+LTFT, MAF+AFR+LTFT) with 4 rates (0.2, 0.5, 1.0, 10.0Hz)

Suggested to speed up to 1.0Hz to FleetCarma, compromised with 0.5Hz due to data size limit

Previous: 0.5Hz, MAF New: 0.5Hz, MAF + LTFT

Error distribution, 2011 Subaru Outback

Error distribution, 2013 Chevy Cruze

Standard deviation	MAF	MAF+ AFR	MAF+ LTFT	MAF+LTFT+ AFR
0.5Hz	2.02	2.05	1.40	1.35
1.0Hz	revious 1.58	1.62	New _{0.68}	0.56

Standard deviation	MAF	MAF+ AFR	MAF+ LTFT	MAF+LTFT+ AFR
0.5Hz	2.55	2.45	1.13	0.78
1.0Hz	revious 2.37	2.26	New _{0.87}	0.26

Reference data: 10Hz, MAF + LTFT + AFR (1.0mi<Travel Distance<10.0mi): Daily commute range

Technical Accomplishments Summary—Task 2

- The objective of task 2 is to develop CAV user functions and evaluate how users interact and accept the system:
 - Designed human participant experiment
 - Completed all experimental data collection
 - Developed data reduction and analysis methods
 - Finalizing data analysis and results interpretation

Task2: Experiment and Data Collection

- Experiment conducted at MCity
 - 32 participants
 - 7 scenarios in both control and treatment conditions:
 - Scenario 1: No speed changes to pass the green light phase- "Green Same Speed"
 - Scenario 2: Accelerate to pass green light "Green Speed Up"
 - Scenario 3: Decelerate to pass green light "Green Slowdown"
 - Scenario 4: Impossible to pass green light "Green Stop"
 - Scenario 5: No speed changes required to pass during NEXT green light "Red Through"
 - Scenario 6: Yellow dilemma zone-impossible to go through-"Yellow Stop"
 - Scenario 7: Yellow dilemma zone-possible to go through-"Yellow Through"

Vehicle instrumentation

- An existing UMTRI Honda test vehicle
- Cameras (front view ,driver face and over the shoulder)
- DAS, GPS and software update

Task2: Data Collection Course in Mcity

- Drivers followed the course outlined in blue arrows.
- Data collection centered around the run from the green cone to the red stop line
- Tablet began receiving SPAT information from the RSU around orange box (about 100 meters out)

Task 2: Preliminary Results on Subjective Data

- A post study questionnaire with 13
 questions was distributed to all
 participants to collect their opinions of
 the system
- The preliminary results were from a subset of 25 participants who completed the study earlier
- High acceptance rate (about 82%)
- Most users think the signal remaining time and recommended speed are most useful
- A Principle Component analysis was conducted to divide the 13 questionnaires in to 5 categories
 - User-friendliness
 - Reliability and usefulness
 - Distraction
 - Safety
 - Energy consumption

	Component					
	1st	2nd	3rd	4th	5th	
q4	0.807					
q1	0.774	Q1: us	er-friendl	iness		
q3	0.763					
q13	0.742					
q8		0.885				
q2		0.863	Q2: relia	ability and	d usefulnes	
q6		0.607				
q7		0.605				
q5 Q3: distract	tion (Low di	istractior	0.802			
q11 Q4: dri	ving safety	(driving	risk)	0.934		
q10	Q5: energy	y saving	(energy		0.835	
q12	consumpti	•	(0)		-0.771	
Eigenvalue	5.617	1.819	1.336	1.118	1.086	
Percentage	43.2	14	10.3	8.6	8.4	
Cumulative	43.2	57.2	67.5	76.1	84.5	

Task2: On-going Analysis-Modeling and Predicting Drivers' Reaction

- The goal is to <u>model</u> whether and how drivers will change their behavior. Independent variables include:
 - (1) Demographic information: age, gender, education, years of driving
 - (2) Drivers' evaluation on this system: 13 questions from the questionnaire
 - (3) Traffic information: Scenarios, Speed and acceleration when the tablet began to work
- Methods include Principle Component Analysis (PCA) for clustering and Random Forest for prediction

Task 2: Random Forest Analysis for Prediction

- Random Forest is a supervised learning algorithm, which operates by constructing a series of decision trees at training time and merges them together to get a more accurate and stable prediction as output.
- Used to <u>predict driver stopping behavior</u> at intersections in this study.
- Importance of each variable will also be assessed.

Task 3: Driver Behavior Modeling

Overview

- General Goal:
 - Model the impact of CAVs on people's travel behaviors and explore its implications for transportation energy consumption
- Major Components:
 - Activity pattern mining: data-driven approach
 - Investigate the current household activity patterns in the City of Ann Arbor
 - Household activity pattern optimization: theoretical modeling
 - Study the potential impact of CAVs on willingness to share rides,
 route choice, departure time choice, and energy consumption

Task 3: Driver Behavior Modeling | Pattern mining

• Goal:

 Extract activity patterns from trajectory data and land-use data, and then characterize the drivers using the activity patterns

Data sources:

- Trajectory data from Safety Pilot (SP) project and land-use data
- Survey data from 396 participants of SP
 - Demographic characteristics: gender, age, level of education, etc.

 Household information: number of cars, number of children in the household, etc.

Method:

- Principal component analysis
- Hierarchical clustering

Task 3: Driver Behavior Modeling | Pattern optimization

Goal

 Study the impact of CAVs on people's travel costs and willingness to share rides at the household level

Question

- Since autonomous vehicles can reposition themselves, some situations previously requiring two regular vehicles may only require one autonomous vehicle.
- Should those households currently having two vehicles replace their two regular vehicles by one autonomous vehicle in the future? Will there be a lot of schedule conflicts?

Assumption of people's travel behaviors

 Given a list of activities to attend, household members choose their travel mode and departure time to minimize their total travel cost

Task 3: Driver Behavior Modeling | Pattern optimization

• Typical Scenario: Shared trips (schedule relaxation < 30 mins)

Task 3: Driver Behavior Modeling | Pattern optimization

- Main findings (1 AV serving two family members):
 - Time: the household members sometimes have to relax their work schedules by more than 30 mins
 - Energy: vehicle miles traveled can decrease due to shared trips,
 but sometime increase due to detours
- Implication:
- for family with many activities, travel far away, and have very different activity locations and schedules, one shared AV cannot provide the mobility needs.
- Next: Multiple shared AVs serving multiple families

- Developed POLARIS regional travel demand/energy use simulation model for Ann Arbor
- Developed algorithms/software to convert GPS traces into individual travel and network performance data
- Developed machine learning framework to estimate the vehicle energy consumption of a wide range of vehicles under real world driving

Polaris model of Ann Arbor

UofM On-Road data (Task 1) complemented with Autonomie simulation results (from POLARIS & RWDC)

Work in Progress, promising first results

Machine Learning Approach and Progress

Powertrain Type

Results - Most Fuel Economy Prediction within 5%

Future work:

- Continue map matching work (match collected vehicle data with POLARIS maps for route segmentation)
- Integrate ML vehicle energy model into POLARIS for mode and route selection
- Develop traveler mode selection including energy
- Perform POLARIS simulations using ML energy model

Objectives

- Design adaptive signal control algorithms
- Implement and evaluate the models in both simulation environment and real world testbed

Technical Approach

- Modeling: We developed volume estimation and adaptive control algorithms using connected vehicle trajectory data
- Implementation: We implemented the proposed algorithms in Jinan,
 China

Uniqueness

- Traffic state estimation and control using low penetration of CV data
- First large-scale implementation of detector free CV based adaptive signal control

- Traffic State Estimation
 - Consider CV as two main types:
 - CV with stop → vehicles queuing ahead of the CV
 - CV without stop → vehicle queue did not affect the CV
 - Assume vehicle arrivals follow a time dependent Poisson process
 - Maximum likelihood estimation with expectation maximization to estimate the arrival rate

Traffic volume can be

estimated accurately

Penetration Rate: ~3%

Argonne Idaho Nation

Two example vehicle trajectories

- Adaptive Signal Control Algorithm
 - Dynamic programming (DP) based optimization
 - A baseline timing plan is generated based on historical data
 - If no CV is observed during, the baseline timing is executed
 - If CV trajectories are observed, the timing plan is updated dynamically based on the estimated delay
- Testing in software-in-the-loop simulation environment:

Field Implementation Process

- Field implementation and deployment Jinan, China
 - Multiple intersections in Jinan China are deployed using data from Didi vehicles
 - Semi-adaptive: adjust signal timing every week based on aggregated data due to low penetration
 - Close-loop control: Detection->Evaluation->Optimization->Detection

Before and after study

City	Plan	Average Delay	Average Speed
	Weekend	-23.08%	+30.92%
Daming Lake District	Weekday morning peak	-7.70%	+5.91%
(7 corridors, 43 intersections)	Weekday evening peak	-9.56%	+8.73%
	Weekday off- peak	-18.78%	+17.14%

Responses to Previous Year Reviewers' Comments

- Q1, Reviewer 1: The reviewer said that the approach being pursued should yield valuable data and impactful results that the reviewer looked forward to hearing about.
- We did not have much data last year because the dongles installation just started. We are happy to report significant amount of data produced (4.5 million miles).

Responses to Previous Year Reviewers' Comments

- Q4, Reviewer 6, The reviewer stated that it is not clear how the tasks are related to each other and whether/how delays or issues in one will affect the others.
- We added a slide (4) to clearly show how all the data/model developed lead to impact Task 4, which developed a CAV model for the city of Ann Arbor.

Challenges and Barriers

- <u>Data recording rate</u>, <u>fleet diversity</u>, and <u>CAN data decoding to</u> generate useful data for the Polaris/Autonomie models
- Recruiting of volunteer drivers, especially regarding their "confidence of the OBD dongles"
- Interpreting the human behavior test results and incorporate into the POLARIS model
- Implementing adaptive traffic control requires coordination from the City

Future Work

- Task 1: Data collection will continue, data will continue to be shared with ANL, INL. EPA and UM researchers.
- Task 2: Complete driver behavior modeling analysis.
- Task 3: Analyze the impact of AVs on mobility at the household level using an activity based model.
- Task 4: Implement the new energy ML model in POLARIS; develop new algorithm for traveler decisions that include energy.
- Task 5: Implementation of adaptive traffic signal algorithms in Ann Arbor.

Summary

- Task 1: Collected FleetCarma data from > 500 vehicles, 550k trips,
 4.5M miles, shared within the team, EPA, Tech Lab students.
- Task 2: Completed all experimental data collection from 32 participants, reduced driving data by using geo-fences and conducted analysis on user acceptance and behavior measures.
- Task 3: Modeled baseline activity patterns of Ann Arbor, conducted analysis of the impact of CAVs on traffic and energy consumption.
- Task 4: Embedded Energy Estimation function in POLARIS based on machine learning.
- Task 5: Traffic state estimation under low CV penetration rate;
 developed adaptive signal control algorithm--Data collection from
 6 intersections on Plymouth Rd, Ann Arbor.
- Two highlighted case studies using Ann Arbor data and model.

Technical Back-Up Slides

Technical Backup:

Case Study 1: Eco-Routing Using Real Ann Arbor Data

Fuel Consumption Model Overview

- Requirements
 - Fast Enough: Can evaluate routable network cost
 - Complex Enough: Can model all kinds of links

- Experimental Motion Trajectories Extraction
- Fuel Consumption Simulation Augmentation
- Map Matching and Link Data Driven Model Training

Data Description

- Sample Size 321,945 trips
 - Covered 9,745/11,506 links in the Ann Arbor area (both local streets and surrounding highways)
 - 5,599 links with more than 100 trips
 - Query Criteria
 - Trip length 10 min 1 hour
 - Trip Distance > 300 m
 - Total Distance: 2,281K miles
 - Total Time: 93,926 hours

3031 frequently visited OD pairs identified 80 starting locations, 123 ending locations

Trip Origins

Trip Destinations

Model Performance

Model: Gaussian Mixture Regression (GMR)

Input variables

Initial and Final Speed
Average Speed
Elevation Change
Link Length
Speed Limit

Model	R ²	MAPE [%]
Average speed model	0.77	37.63
Power balance model	0.86	46.22
Neural Network	0.98	15.60
GMR	0.98	10.08

- 1. K. Boriboonsomsin, M. Barth, S. Member, W. Zhu, and A. Vu, "ECO-Routing Navigation System based on Multi- Source Historical and Real-Time Traffic Information," *Network*, vol. 13, no. 4, pp. 1694–1704, 2012
- 2. J. Kwon, A. Rousseau, and P. Sharer, "Analyzing the uncertainty in the fuel economy prediction for the EPA MOVES binning methodology," SAE Int., 2007.
- 3. W. Zeng, D. Candidate, T. Miwa, and T. Morikawa, "Application of machine learning and heuristic k-shortest path algorithm to eco-routing problem with travel time constraint," pp. 1–18, 2016

Routing Results

• Computation Time: 13 s on Computer with Intel Core i7 and 16 G RAM

- Frequently traveled OD: 3031 pairs with 123 destinations and 80 origins
- Eco Routing
 - 21% same as fastest
 - 22% same as shortest

- Constrained Eco Routing
 - 48% same as fastest.
 - 23% same as shortest

Routing Results

- Constrained Eco Routing v.s. Fastest Routing
 - Max fuel saving 51.8%, max time increase 6.48%
 - Expected fuel saving 5.16%, expected time increase 0.91%
- Eco Routing v.s. Fastest Routing
 - Max fuel saving 51.96%, max time increase 105.06%
 - Expected fuel saving 13.85%, expected time increase 8.40%
- **Expected performance:** estimated with OD pair frequency

	Expected Fuel	Expected Travel Time [s]	
	consumption [kg]		
Shortest	0.4809	611.37	
Fastest	0.5312	554.45	
Eco-routing	0.4576	601.04	
Constrained eco-routing	0.5038	559.49	

Technical Backup:

Case Study 2: Eco-approach and departure ('EAD') at Signalized Intersections Using Ann Arbor Data

1. Introduction: EAD Scenarios

[Multiple vehicles (Front-vehicle)]

There is a frontal vehicle (FV) which constrains the motion of HV

2. EAD Problem Formulation

- Described as an optimization problem of minimizing cost function J
- Cost function J = Fuel Consumption, Travel Time, Comfort

$$\min_{u} J = \int_{t_0}^{t_f} J(t) \ dt$$

Components of the optimization problem			
Transitional Cost	Fuel Consumption		
	Travel Time		
	Riding Comfort		
Hard Constraints	Red Lights Violation		
	Speed Limit Violation		
	Acceleration & Brake Limit		
	Synchronizing End Speed for Fair Comparison		
	Safety Constraint Violation (Front Vehicle case)		
Initial & Final Conditions	Initial & Final position and speed		
System Dynamics	$Ma = F - Mgfcos\theta - 0.5\rho C_d A(v + v_w)^2$		

• Method: Dynamic Programming to find the global optimal solution

2. Dynamic Programming Simulation Details

• Cost function is the weighted sum of Fuel Consumption, Travel Time, Comfort

• Given the hard constraints, the results (Fuel and Time savings) depend on w_f , w_{t_End} , $w_{SpdChange}$

Details of Dynamics Programming Weights

Name of the weights		(1) WeightSet1 'Fuel-optimal'	(3) WeightSet2 'Fuel-saving'	(4) WeightSet3 'Time-saving'	(6) WeightSet4 'Time-optimal'
Stage Cost	w_f , Fuel	100	10		0
	w_{t_End} , End Time	0	0.2	1.0	100.0
	<i>W_{SpdChange}</i> , Comfort(SpdChange)	0	1		0
Hard Const- raints	End Speed Sync	$v(t_f) < v_{BSM} - v_{\epsilon} \text{ or } v(t_f) > v_{BSM} + v_{\epsilon}$			
	Invalid Speed	v < 0 or $v > speed$ limit			
	Final Location	$d(t_f) < d_f$			
	Red Lights Violation	$d(t_i) \in [d_{node} - d_{\epsilon}, d_{node} + d_{\epsilon},], \qquad t_i \in t_{red}$			
	Turning Speed Violation	$v_{turn} > 5$ mph			
	FV Safety Violation	TTC $< 2.0(s)$ or Range $< Range_{lb}$			

Studied 6 Intersections

- 1. Eastbound, 18003 -> 18004 (Fuller Cedarband -> Bonisteel)
- 2. Westbound, 18004 -> 18003 (Fuller Bonistell -> Cedarband)
- 3. Eastbound, 18013 -> 18014 (Plymouth Nixon -> Huron Pkwy)
- 4. Westbound, 18014 -> 18013 (Plymouth Pkwy -> Nixon)
- 5. Eastbound, 18006 -> 18007 (Fuller Fuller Court -> Huron High)
- 6. Westbound, 18007 -> 18006 (Fuller Huron High -> Fuller Court)
- All results are similar. Only one case reported below
 - From SPMD, Human driving records at intersections are reproduced
 - Target Intersections : Plymouth Road, Ann Arbor with 2 intersections

261 Trips recorded Westward,
Through movement

3. Preliminary Result, Fleet Statistics

Ideal FV

4. Conclusion & Works in Progress

[Conclusion]

Eco-AND studied using real Ann Arbor trip data (real travel behavior). "What if" traffic signal information is used, for fuel saving in an ideal setting

But, EAD is only part of urban driving:

✓ Does NOT reflect fuel saving of the whole trip.

Free-flow EAD represent the upper bound of fuel saving potential of EAD Ideal FV EAD offers estimation of the impacts of other vehicles/traffic to fuel saving

[Works in Progress]

Realistic FV case (With stochastic FV motion): FV motion can be predicted from a Human FV model in the vicinity of the signalized intersections

